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Today’s presentation

• Current and near future turbulence diagnostics on DIII-D.

• Some mechanics of comparisons.

• Example of diagnostic issues using FIR scattering as well as
illustrating  new diagnostics coming on line.

• Data from correlation reflectometer system

– Comparison to UCAN

– Preliminary comparison to GYRO

– Also new data from NSTX

• Some observations and issues from an experimentalist’s perspective.
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Current and near future DIII-D turbulence diagnostics

Diagnostic Example limitations Measurements

FIR scattering Chord averaged ñ, kθ

PCI
(phase contrast imaging)

Chord averaged ñ, ∆r

Reflectometry Location is profile dependent ñ, ∆r, kθ, Vθ

BES
(beam emission spectroscopy)

Need NBI ñ, ∆r, kθ, Vθ

ECE
(electron cyclotron emission)

Long time average Ttilde, kθ, Vθ

Langmuir probes Edge plasma ñ, φφφφtilde, Ttilde Γ, Q,  kθ, Vθ

Magnetic probes Edge plasma Btilde, k||, kθ

Polarimetry (future) Chord averaged Btilde

High-k scattering (future) Under development ñ, k >10 cm-1, kρs > 1



September 19, 20025 UCLA
UCLA UCLA

Mechanics of Comparisons

• Implement numerical diagnostics that simulate real world

experimental measurements and analysis techniques.

– Examples: local ñ wavenumber/frequency spectra,

magnitude (e.g. via reflectometry, beam emission

spectroscopy), chord averaged ñ with narrow k response

(FIR scattering), local heat transport, etc.

• Simulated diagnostics use similar localization (or lack

thereof), wavenumber/frequency response, detection

position within the plasma,

– Use similar data analysis techniques, including FFT’s,

correlation analysis, normalizations, etc.

• Work in this area ongoing and more recently includes

–  D. Ross, U.  Texas, et al., compare BES, simulation

–  B. Nevins, LLNL - synthetic diagnostics1.0 1.5 2.0 2.5
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Example: FIR scattering
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• FIR scattering detects density fluctuations

• Observed wavenumber kobs depends on
viewing angle (probe wavenumber = k0)
kobs = 2 k0 sin(θ/2).

• Spatial resolution depends on kobs.

•  ∆k depends on beam size a (∆k=2/a)
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Initial 3-D design of high-k integrated systemInitial 3-D design drawing of integrated high k system

UCLA
UCLA UCLA

tokamak
port

High-k
scattering
system

Low-k/
interferometer
or polarimetry
system

Reflectometer
waveguides

Rotating optical table
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• Rather than adopting the
concept outlined in a recent
DoE proposal, UCLA plans
to implement more of an
incremental approach so that
– (1) Believable data at high

k might be obtained earlier

– (2)This data would then
guide future system design
and lead to an improved
system

– (3) The modified system
allows integration into the
new vent and run schedule

Modification in approach to high k scattering

Scattered radiation
with scattering angles
from 10 to 19 degrees.

Probes �k�s from ~10
to ~20cm-1

Optical system can either use a
single lens and collect full range
of wavenumbers.

or

Smaller individual lenses can be
used to select different
individual �k�s.
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High-k density fluctuation backscattering

• M. Gilmore (UCLA but soon to be at
UNM) proposing to measure high-k using
combination of ECH waveguides and
current reflectometry antennas.

• Depending upon geometry will be k ~ 30-
60 cm-1

• Measurement location will initially be on
high field side of tokamak.
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Example: Correlation reflectometry

• Turbulence data obtained from
correlation reflectometer- radial
correlation length.

• Correlation length is a statistical
quantity, independent of amplitude thus
avoiding some potential calibration
issues and making it good comparison
quantity.

• Second advantage of system is ability
to probe large region of plasma cross-
section in many different regimes
(Ohmic, L-mode, QDB, etc.)

• Representative cross-correlation
shown.
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Examine ∆∆∆∆r from L-mode plasmas

• L-mode discharge - sawteeth avoided via early

neutral beams.

• Radial profiles of density and temperatures at the

time of interest.

• Plasma in a regime relevant to

– trapped electron mode (ρ < 0.9),

– collisionless drift wave (0.9 < ρ < 1),

– ion temperature gradient (ITG) mode (ρ < 1).
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Radial Correlation Length Decreases with Radius

•  ∆r are 5-10 times larger than ρs

– but are of order poloidal ρθ,s

• ion sound gyroradii
–  ρs = (miTe)

1/2 /eB

–  ρθ,s = (miTe)
1/2/eBθ

–  ρs important as enters into
theoretical predictions of radial
correlation lengths ∆r.

• Indeterminacy of ∆r scaling
with ρθ,s or ρθ,s is interesting
and  important question which
we will  return to later.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.4 0.5 0.6 0.7 0.8 0.9 1

∆r
expt

ρ
θ, s

ρ
s

5-10 ρ
s

L
en

g
th

s 
(c

m
)

Normalized radius (ρ)



September 19, 200213 UCLA
UCLA UCLA

UCAN Turbulence Simulation Code

• Massively parallel, nonlinear, toroidal, 3D,

global gyrokinetic particle-in-cell (PIC) code

developed at UCLA [Sydora, ‘87] utilized.

• Cartesian coordinates covering whole plasma

cross section (or as is numerically feasible).

• Circular cross-section.

• Electrostatic approximation is imposed

throughout.

• Adiabatic electrons.

• The nonlinear δf method is applied to solve the

gyrokinetic Vlasov-Poisson system of equations.

• Polynomial fits to experimental profiles (ne, Ti,

q, Er) to set initial equilibrium.

Linear phase

Non-linear phase
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Simulation Produces Similar Results When Zonal
Flows Included

• Two different numerical runs shown

- with/without zonal flows.

• Without zonal flows ∆r are long,

spanning most of 65 cm radius.

• With zonal flows ∆r drop to near

measured ∆r in magnitude and radial

behavior.

–  ∆r reduction with zonal flow also

observed in other simulations.

• Zonal flows clearly change

turbulence characteristics and are

necessary for agreement with

experiment.
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ρρρρ*scaling experiment -Preliminary!

• Reflectometer data in 5-10 ρs range.

• Reflectometer and BES data reasonably
close given different radial positions.

– Shots for reflectometer data not matched.

– No comparable reflectometer data for 1T
case.

• Radial variation?

– Illustrates need for radial profiles from
simulation.

• Illustrates experimental problems associated
with comparisons - matching spatial
location, times, ...
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Compare experiment and GYRO for ρρρρ*

scaling experiment -Preliminary!

• Reflectometer data in 5-10 ρs range.

• Reflectometer and BES data reasonably
close given different radial positions.

– Shots for reflectometer data not matched.

– No comparable reflectometer data for 1T
case.

• Radial variation?

– Illustrates need for radial profiles from
simulation.

• Illustrates experimental problems associated
with comparisons - matching spatial
location, times, …

• GYRO - kinetic electrons, rotation, shaping,
shafranov shift, profile variation, β >0
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Compare experiment and GYRO for ρρρρ*

scaling experiment -Preliminary!

• Reflectometer data in 5-10 ρs range.

• Reflectometer and BES data reasonably
close given different radial positions.

– Shots for reflectometer data not matched.

– No comparable reflectometer data for 1T
case.

• Radial variation?

– Illustrates need for radial profiles from
simulation.

• Illustrates experimental problems associated
with comparisons - matching spatial
location, times, …

• GYRO - kinetic electrons, rotation, shaping,
shafranov shift, profile variation, β >0
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Example: NSTX correlation reflectometer data

M. Gilmore, UCLA
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NSTX crf data 2

M. Gilmore, UCLA

NSTX data
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NSTX crf data 3

M. Gilmore, UCLA

NSTX data
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NSTX crf data 4

M. Gilmore, UCLA

NSTX data
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Example: DIII-D Low and high density discharges show
different confinement characteristics (Rettig APS 2000)

• Circular cross section plasmas used.

• Low and high ne discharges showed different confinement as well as
turbulence characteristics.

– Energy confinement initially increases with density then saturates.

Density PROFILE
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Low and high density discharges also show different
turbulence characteristics (Rettig APS 2000)

• Appearance of low frequency density fluctuation at higher ne.

• Poloidal  propagation (from reflectometer) shows changes consistent with
appearance of ñ propagating in ion diamagnetic drift direction.
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Low density plasma did not go unstable in UCAN
simulation due to lack of  non-adiabatic electrons

• Time history of electrostatic

fluctuation energy shown above.

• Simulation with trapped electrons

now goes unstable.

• Resulting instabilities looked like

mix of TEM and ITG
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Example:  High Performance Plasma (QDB Discharge)

•  Quiescent double barrier (QDB)
plasmas are high performance plasmas
characterized by transport barriers in
both edge and core.

• Compared to standard L–mode
discharges QDB plasmas show
substantial reduction in core electron
and ion thermal diffusivities

• Results thought to be consistent with
ExB velocity shear decorrelation of
turbulence and resulting reduced
transport.
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Radial Correlation Lengths Shorter in QDB Plasmas

• QDB ∆r below values normally seen in L–mode - but still larger than ρs.

• Departure from normal L–mode type scaling occurs most clearly for r/a = 0.2-0.5.

• Since ∆r often related to transport step length this decrease in ∆r is consistent with local decrease in

transport levels.

• Simulation ∆r similar to experimental data in magnitude and radial behavior.

• Large zonal flows generated in simulation, of order experimental ExB flows.

– As much as 20 km/s compared to experimental 30 km/s.

• Without zonal flows simulated ∆r very long, consistent with picture of shear induced ∆r reduction.
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Effect of reversed magnetic shear is weak in simulation

• QDB plasmas have weak negative central magnetic shear

• Simulation shows little difference between two cases.

• What are shortened ∆r due to in simulation? Shaping, electrons dynamics, …?
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Example: Does ∆∆∆∆r scale with ρρρρθθθθ or with ρρρρs?

• Uncertainty between ∆r scaling with ρθ,s

or 5-10 ρs was intriguing.

• Pointed to possible trapped particle
effect via ρθ,s.

• Also several analytic theories have ρθ,s
dependence.

• Previously found ∆r ~ ρi (McKee, 2001).

– Experiment was at constant q.

– Results could be due to B or Bθ.

• Experiment to investigate rq,s scaling
and to break indeterminacy.

• L–mode plasmas, varied Bθ via Ip.
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Simulation Predicted No Strong Scaling With ρρρρθθθθ

• Prior to experiment simulations performed
to predict ∆r variation with ρθ.

• L-mode conditions, q value varied by

factor of 4.

• Found no clear variation of ∆r with ρθ  -

similar to experiment.

• In simulation, q also varied by changing

major radius R (via q=rBz/RBθ).

– Some weak evidence of ∆r variation

observed, presumably due to major

radius variation.

– This effect will be numerically tested

more fully in the future.
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Correlation length not strongly dependent on ρρρρθθθθ

0

1

2

3

4

5

0.2 0.3 0.4 0.5 0.6 0.7 0.8

∆rexpt
ρs
ρθ,s

Le
ng

th
s 

(c
m

)

Normalized radius (ρ)

High q Low q

• Found no clear variation of ∆r
with change of ~ 1.8 in ρθ.

• ⇒  Scaling found previously
was indeed with B0 and ρs
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Needs and questions

• High-k simulations - diagnostics coming on line, DIII-D, NSTX

• Magnetic fluctuation simulations ? - diagnostic planned, within 1-2 years

• Te fluctuation simulations - measurements possibly next run period.

• Shaping

– Affects QDB simulations on DIII-D?

– NSTX simulations needed.

• Electron dynamics - clearly affects some results, QDB?.

• Most measurements are n_tilde, some Te_tilde, B_tilde

– Code differences between n_tilde  and phi_tilde?
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Observations and Issues

• “Qualitative vs quantitative”
– Correlation lengths, spectral shapes, changes in ñ, fluxes, etc. with

plasma parameters.

         versus

– Absolute ñ, fluxes, etc.

– Is one class more appropriate or better than other?

• Multi-point vs single point
– Agreement/disagreement in restricted radial range probably not

enough.

– Scalings with plasma parameters, e.g. non-dimensional  scalings
needed but again more than one radial position.
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Observations and Issues

• Time vs space
– Experiments have lots of time points, good statistics, limited spatial

points.

– Simulations with lots of spatial points, limited time

• Can simulations utilize extra spatial points as proxy  for  time?

– Similar to using increased number of time realizations in time
series analysis.

• Fluxes vs diffusion coefficients
– Fluxes (heat and particle) more directly related to experimental

measurements.
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Bookkeeping and small things that can take a lot of time

• Common Definitions
• RMS levels: YRMS

2 = <  [ Y - < Y > ]2  > where <…> is a time
average over an agreed upon time T.

• ñ/n, T_tilde/T,  φ_tilde/T all normalized to local values of n and
T, where the tilde ~ indicates an RMS value.

• Spectra PYY(f) = ℑ (Y)· ℑ *(Y) are power not amplitude.

• Correlation lengths: 1/2 power vs 1/e widths.

• Input of experimental info, profiles into code
• e.g. EFIT data, density, Te, velocity profiles

• Ease of input

• Error checking
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Future Experimental Measurements

• n_tilde - Te_tilde phase?

• k_parallel?

• more globally extended measurements of zonal flow?

• Others?


